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NOMENCLATURE
C constant of intcgration
c, vector of integration constants
K unit spatial vector; inverse collision
N number of granules in & system
v volume of & system
v granule velocity: inverse collision
X body foree
a constant
c constent of integration
g unit spatial veetor in direction j
firv b, I single-granule velocity distribution function
frvirw), £ two-granule veloeity distribution finction
hilev,, v ), h correlating fisnction
I X, ¥, orz index
k unit spatial vector
INTRODUCTION
From power production to catal
granuler materials are &n important
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grenule mass
grenule number density
granuls position
bme

» granule velocity
continuum velocity
Carlesian coordinates

instrument responss time
flow property
Summaton

granular temperature
Lagrange multiplicr
Eranule property
continiium mess density
grenule diameter
Lagrange multiplicr

ysis from cereal handling to chemical and pharmaceuticals manufacturing,
part of the economy, Accurately knowing how they move would allow for




tremendous savings in their processing. Since the work of Lun et al, {1984), the kinefie theary of gases {Chapman
and Cowling, 1970) hes been spplicd to predict the continuum propertics of flowing granular materials, In using the
kinetic theory of gases, the assumption has been that the steady-state distribution of velocities for granular flows that
have no gradients is Maxwell-Boltzmann, the same as & gas in equilibrium, This distribution becomes the zerath-
order term in an expansion to predict the flow properties of sheanng granular materisls. The problem is thet granules
suffer inelastic collisions, whereas the usual development for gases {Chapmean and Cowling, 1970, Hirshfelder et al.,
1954; McQuarrie, 1973) considers only encrgy-conserving clastic collisions. Goldhirsh and Sela (1996) resolved this
by using the Maxowell-Boltzmann distribution for elastic eollisions a5 the zerath-order term. This work presents &
development indicating that the velocity distribution of even very inelastic grmnules is Mucwell-Boltzmann for steady-
stale flows exhibiting no gradients.

MODEL DEVELOPMENT

Imagine a canonical ensemble composed of a great number of macroscopically identical, closed systems. Each
system has the same number of spherical granules N all with the same mess m and dinmeter 0. Let the mass of each
spherical granule be coneentrated at its center so that rotational degrees of freedom are ignored. Each system is
enclosed within volume WV, which is very large compared to its area so that boundary conditions ere not considersd,
As time passes cach system evolves according to Newton's Laws of Motion; granules collide inelastically and
transform their kinetic encrgy into thermal energy. Becauses that thermal energy cannot be transformed back into
kinetic energy, it is considered lost to the system. Thermal energy is replaced by kinetic energy transmitted thraugh
the walls of the system from = surrounding bath so large that it maintains & constant granular temperaturs 6.
Granular temperature is proportional to the kinetic energy of random metion. At any time, the macroscopic state of
each system is characterized by N, V, and 6.

Introdues the single-granule velocity distribution function fr,v,,t) defined so that the most likely number of
granules in any one selected system that has a velocity wathin dv, of v, and whose center is within dr of T during time
At of'tis f{r,v,,1) drdv;,. Practically, the time interval At is the largest time needed to replace kinetic energy lost bya
collision, the time long cnough for & representative number of granules to visit the subvolume at ¢, or the response
time of & flow measurement device,

The evolution of average mass, momentum, and kinetic energy charscterizes flows. Since each of thess depends
on the single-granule velocity distribution function, & description of flow is possible when the time rate of change of £
t5 known,

d Frt) _ d fry,t)
—a Y
i (1
where ¥{v,) represeats mass, momentum, or kinetic energy for & single representative granule; and F(r,t) is its
average value within the flow. The time evolution of £ is zero unless & collision occurs. A forward collision changes
¥; to another veloeity v, whereas en inverse collision changes it from some other velocity V, tov,.

For granules, mess and momentum are conserved during a collision, but kinetic encrgy is not. A simple model
that takes into aceount the dissipation of Kinetic energy into thermal energy whenever granules collide is one in which
the granules bounce back with a relative velocity along their line of centers that is less than their pre~collision value
{Jenkins and Savege, 1983). For forward and inverse collisions, respectively, the expressions arc

e ko (V) = - ke (v md g K- (Vy-V) = - K- (v-v) = k- (v,-v), 2)
where the restitution cocfficient ¢, is a constant material property with a value between 2ero and onc; v, and V, are
the reapective velocities of the siriking granule for the forward and inverse collisions; and k and X are unit vectors
that point in opposite dircetions from r to the center of their respective striking granule. The relationships among the
variables describing the before and efter of an inverse collision are

1+
Wy :vl-r%{_t:%:.l (k- -v) k=v —%{IHR}{K.-(YI—VI}} K

1+
V:.:v:—%{ .':"]{k-{v,,—vlj} k=vt-a;—r{l+ev_}{1{-{"r’z-¥l}} 3

LR {3}
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By squaring and summing the expressions in Eq. (3) and applying Eq. (2), the change in the kinetic energy associsted
with an inverse collision is

S R R (ST UARS i e m

The Boltzmann equation describes the ime rate of change in fin terms of forward and inverse callisions, For
granules it is e

vt
M:ﬂ-+vrf&\r!+v‘_f+_x_
at at ' m

= B éf"{r—uk,vz,r,\-’l,l} = freoky,ry | (K - (v-v)) dk d, ,

k- {'I-\'I.) TR -

where X is & body force end £ is the two-granule velecity distribution function stating the likelihood that any two
granules are respectively located at two points in space with two velocitics (Goldhirsh and Sela, 1586). Equation (5)
becomes the Boltzmann cquation foraha,rdsphn:gashyuuiugcgmm:,b}rclmingﬁusing Boltzmann's

The time rate of change of any continuum property Tt} of & flowing ges is described by Enskog's general
equation of change for molecular property §(v). It is derived by multiplying the Boltzmann equation by v,
integrating over all v, and exploiting two symmetrics (MeQuarrie, 1973). The same can be done for granuler flows
because the two symmetrizing steps are cansequence of integrating over all v, as well as all ¥;. ind are not affected
by the restitution coefficient. The first symmetrizing step is recognizing that the velocity af the granule at r ean be
labeled either 1 or 2. The sceond slep is reeognizing that every collision involving a granule at r is both & forward
collision and an inverss collision. Enskog's general equation of change for flowing granules is

TeH .2 ” V) 0¥V, )V, =

k- iw-v) €0 —=-=

L ok VoV, - Preokyyrn ) (k- (v3-¥,)} dk dv, dv, .
= (6

. The goal is to determine f for a steady-state granular flow exhibiting no gradients and absent a body foree, To
proceed further, and in contrast to the molecular chaos assumption, £ is approximated as the product of two single-
particle velocity distribution functions fand a correlating function b that depends upon k, v, and v, for the forward
callision and upon K, V,, and V, for the inverse collision,

iz f’{r—uk,"r"z.r,\-’l_l}-f"‘(r+nk,vg,r,vj,t "

=
L BKV,V,) fir-okV,8) RV, -y, ) flrsoky,t) iy, )
= o)

The newt step is to apply Enskog's general equation for chenge to the steady-state, no gradients and no body-foree
case. In analogy with the Boltzmann H-function for the micro canenical ensemble (McCuarrie, 1973), the relevant
property o use for the canonical ensemble is

- 2
SRR R S B [ i) + 3—] ] fv,) dv, -

Using this propetty, Enskog's general equation for change, Eq. (6), becomes
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To the braces in the seeand term on the nght side of Eq. (%) add hw and subiract it from the brackets in

h{Kv[!v}} i
the first term,
&F _ - f_]r my; +mv3-mV;-mV3 ir'ﬂk hﬂw vl
dt 4 e 20 2mB V)

[%h[!(,\-’j.‘-’tﬁ{vt.t}fwl,t} - Bk, ¥, v D, ) ] ke, -v,) didv,dv,
Cn

&|g,

. 5 DY)
[f {lu[f[v[}lﬂrhff{"ﬂi"h{ff"' Jl-hif(Va)l+n RV, ‘lv_;}

h'."{rl-"r'] Tl -

[L:h{i(,vz,viﬁ\fi,t]ﬁ\’l,t} 2 h{k,vl,vl}f[vi,tﬁvt,t}J ke(v,-v,) didvd, .
e

(10}
The first term on the nght side is zero as long as
2
e hikvywy) | mvemvi-mVi-mVi ) it :
DY,V 20 =~ o (K Oy -V - [k (g = 9P ). ik

This will be shown to be the case. For now assume that the first term is zem, and notice that Eq. (11) implies that a
solution is sought in which the argument of the correlating funetion is ke{v.-v,}; bk v, vo) = hike{vy,-v) ).
The integrand appearing in the second term of the right side of Eq. (10) can be written &s

Y 1
_rE(vI V.0
e

f!{'\-'l\" B - Byt (k- (vv) ]

(12)

Fegardless if {0V, Ve = vy vt or £V, Ve < Fvyvub), this integmand is everywhere positive.
Consequently, the time rate of change in F is always negative. Since 'F is bounded, its rale of change cventuslly
becomes zero as does the remaining integral on the right side of Eq. (103, This is possible enly if f(V,,V, Ve =
vy, v,) for all v, and v,. Accordingly, for the steady-state flow that exhibits no gradients and no body foree, the
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Baltzmann equation, Eq. (5), simplifies to
1
_E h{K{VI - 1}) Wﬂ ﬂ-vl} E h[k'{vz I 1"]:]:] ﬂ:‘fz} f{ﬁ:l y O
€
0 = Ity = v) + W) + Iflv)) - IAKAY, - V) - BAY,) - BAV)) ) . (3
The derivation of fas presented by Kennard (1938) is followed. The functions fand h are found by requiring
that they make Eq. (13) stationary under the constraints of mess, momentum, kinetic energy, and linsof-centers
velocity changes for an inverse collision. By inspection, the objective function in Eq. (13) depends on fourteen
venables. Six are held constant by considering only those inverse collisions with constant Viand V.. The
independence of the three companents of v, is eliminated by explicitly considering the differential changes in the
thres momentum equations, mv,+mv,-mV,-mV,=0,
m dv, +m dv,, = 0, m dvy+m dv, =0, and m dv, +m dv,, = 0, or dvy, = - dv,, , j=xyz . (14)

Wariations in the five remaining varables express the differential change in the kinetic energy, Eq. (4),
0= Z m{"ﬁ"‘":j} dry, + '?Zl [EA{V,-V))] d[KA(V,-V))] - % (v, =v)] dlk{v,-v,)]

iy (1%
the differential change in the relationship between the line-of-centers velositics associeted with e inverse collision.
e 0 = e ARV, V)] - dklv,vy)] i
and the variation in the objective function, Eq. (13),

- _KEJ:; [ E 1:;:2:*.)1 R 1:(5:}} frere 3 ‘1:(1[:{(1 ( ::vj;;;}]} a4
) - I;l(;?f WTV:;]JJ d{K . Wz""'ﬂ'] (17}

Lagrange's undctermined multiplier method is used to extremize the above variation under the constraints for the
encrgy, Eq. (15) and the linc-of-centers velocity, Eq. (16). The Lagrange multipliers are 1t and %,

b3 [ 3 hifty) _ 3 l(fvy)

jmryz v d vy

+ pml vi=v,) } dv;

]

) [a B0, v)e,)

3 [kfvy-vy)] _'PIE fkevy-v,) - “] dfke(vy-vy]]

d h[h{K'{vaﬂn m
= - — [K(V,- V)] - x V-V, .

[ 8 [K{(V;-V,)] 2 Rl b (18)
Each of these five cocfficients must be zero because [k = (v;-,)], [K = (V,-V,)], and the components of v, can vary
independently of each ather.

To start, set the coefficient of d[l = (v,-v,7] to zeto. It beeomes
d Infh(k{v,-v,)e;)) um
= = [kfv,-v,]] +

3 [k(vyvy)] g sl (19)

which is integrated to yield
In(hkry—v))) = B flevyvI* + x [l + ¢ 5
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Likewise the coefficient for d[K » (V,-V,)] is sct to zero and integrated to yield
In(h(EAV,-V,))) = % [K(V,-VP + x g [K(V,-V,)] + C.

(21)

Mow set to zero the coeflicient for dv, , in Eq. {18),

d n(flv,))) & l(flvy))
T T 3 = = pm (v - ) -
1= Vi (22)
; _— . ; ; 7 W{flv,) _ L
Differentiating again by either v, or vy, yields — 1" = 0 _ because f{v,} is independent of the companents of
Iy ¥ ix

vy. Thisindicales that M depends only upon v, Similarly, every first derivative of sither v or flv,) is
Lx

& function solely of the variable named in the dervative, Differentiating Eq. (22), by v,, vields

& In(fiv,) _
Hie @3)
which is twice integrated, knowing that the first derivative depends on ¥, alone, to obizin
- pm,
In(fl,)) = Vix + Cyy Vi + Cyy
1 e x Vlx c;q: {14}

where Cy, is & constant and C,, may be a function of v, and v, Differentiating this twice with respect to vy, yiclds
Pilyy) _ FC,

1 3"
vy, vy, s
The cosflicient multiplying dv,, in Eq. (18) is set to zero and differentiated with respect to vy, to yicld
& m(ly)
: ’
Fiy 26)
. . & In(flv,)) ooy
Comparning the two expressions for T Eq. (25) and Eq. (26), indicates that
Iy
_ = pm 1
C’}:—. = 3 Viy * clr ""lr * C’: L] an
where C,, is & constant and C, may be a function of v, This expression for C,, is substituted into Eq. (24),
Sopm a1 m
hfiv,)) = - = Vi - F_l_ ifY + G Vo Ch, iy v 5 &

To evaluate C, twice differentiate Eq. (28) with respect to v,, and subtract from it the result obtained by setfing
the cocfficient of dv;, in Eq. (18) to zero and differentiating it with respect to v, The result is
&C
= ; == Hm, or sz_ Flm?l;;+clzvlt+c!
T 2%

Bath C, and C, are constants. With that, Eq. (28) becomes
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In(fv;))

o Vi TG Y, TGy vy, TG Yt

Ty ET Ty My
=-pmvi+Cl~v1+C‘.i.
< (30)

The Lagrange multiplier p and the constants C;= C e +C e+ C e and C, are evaluated by requiring that the
averagss of mass density and velocity be their measured values for the continuum and by requiring thet the variance

cC-C
in the velocity be related to the granular temperature. Following McQuarric (1973), define In(a) = C, + 2‘ 3
pm

and express In(fiv, 1) as

c;|? C c
(flv,)) = bfe) - £ [Vl-—l] ,oor fiv)=a Dm{ o . [vl--—i] - [ﬁ_—l] } !
2 p 2 pm m G

The mass density is

c :
p:mfﬂ“'l}&"f:m“f% (v__ [T"ﬁ }d?fma[ph;]l R )

The compenent of the average velosity in the x direction is
F - S
{v:}imTa' J’ ¥, E':7|} d‘F = EP_ £ _& '”J d‘F’ J-J- e _{", T'C-!':'LT TE“ =j d‘F ii'q"

.

pm (33)

The other continuum velocity mmpnnmis together with <v.> yicld m—{Cu:#Ciﬁ-h Cye. W{um). Granular
tempemture is related to the varance of the velocity,

c. )
Jo-tanop o [Greh td =5 [ T [ [“—; ] fiv,) &,

Imyz

sz i

2pm (34)
3 3
These . —C' ad a=8[ 1 )2-n| L)? betituted into
rcsult‘.kl.'lm—— f" = E-E ?‘tﬂ' =1 ﬁ » BIc U i Eq.

(31) to yield the Mmcwell-Bolzmann Vﬂlﬂﬂt}' distribution,
Z ‘E- T -i E— -—’ ¥, 1 '_|
E‘r{l}:aa_;-i{ﬁ pn::] Et m]=n[l:ra}1:m{1_m}i ilﬂdﬂ:Vl}—u[ 1 ]:ezﬂﬁr:'m}l‘

28 (3@3)
where n is granule number density. Likewise
Rl 3 Ll ey
ﬂvj—n[zia]zem ; and [[Vﬂ-n[z?lte}’eﬁ -

These results are substituted into the objective function, Eq. (13), in order to cvaluate the difference in the constants c
and C from Eq. (20) and Eq. (21),
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0 = Infli(k(y, = v,))) = WOV, - V) + Wiy} - I(RV,)) = B(Rv,) - I(fV,)) + Infeg)

0

L mi-mVi-mV) « e-C + ERV, - (v =¥+ BRIV, -3 -<2 )+ nfe)

[:l:c-l:+pm[vl+v2-V|-'-"r]-ﬂf:-+h1(ei} or C=c+he)

37}
This result and p=1/m®, Eq. (34), arc substituted into Eq. (21) and Fq. (22) to yield
In(h(le(v,-v,))) = % (e(vy=v)F + % [lefv,-v)] + ¢ o
1 1
{0V, -V = T [-K.[:\,rz_vl}]l =% & [K(Vy-V))] + Infeg) + © G8)

The two expressions in Eq. (38) are combined to reproducs the remaining criterion for the objective function to be
zemo, namely that Eq. (11) is satisfied. Thus, the veloeity distribution funetion for gradient-fres, steady-state granular
flows in the absence of & body force is Muowell-Boltzmann,

SUMMARY

An spproach is presented that indicates that the single-granule velocity distribution function for a primitive
madel granulor flow at steady-state and absent a body fores and gredients is Maxwell-Boltzmann, the same ssa gasin
equilibrium, and in agreement with the central limit theorem of statisties. The inelasticity of & granular eollision is
treated by causing the rebound velocity along the line of centers to be less than the incoming velocity; consequently,
the ensemble 15 canonical and Enskog's general equation for change is applied to & funchion that is preportional to the
Helmholtz free energy. For the Helmholtz froe encrgy to obtain a stationary value, Boltzmann's molecular ehana
sssumption is replaced with a correlafing function that depends on the relative velocity along the line of centers of the
colliding granules. The Mexwell-Boltzmenn velocity distribution then follows from Kennard®s (1938) vadational
approach. These results arc also applicable to hard-sphere gases by setfing oy to one and everywhere replacing 8 with
ky T/m, where kg is Boltzmann's constant and T is absolute tempersture.
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